

Onsite Power Generation

Gary M. Fechter
Performance Solutions and Engineering Services
UGI HVAC Enterprises

Why Combined Heat & Power?

- Separate production of power and heat is not efficient
 - Conventional system 45% to 65% efficient
 - CHP systems Greater than 80%
- Economics
 - Lower utility cost
 - Operational savings and budget stability
- Security of Supply
 - Reduce disturbances and improve power system quality
 - Improve reliability and meet redundancy requirements
- Environmental
 - Environmental sensitivity and compliance
 - Reduce carbon footprint and emissions

Design Considerations

- Power density and utilization factors
- Load profile
 - One shift, two shifts, 24 hours
 - 5 day week, 7 day week
 - Summer, Winter, Shoulder seasons
- Turbines versus Engines
- Thermal end use
 - Steam versus Hot Water
 - Chilled water
- Heat Recovery Systems
 - Fired versus Unfired
- Need for utility upgrades
 - Gas line capacity and pressure
 - Electrical system capacity and interconnection requirements
 - Backup power and standby charges

Case Study 1 - Banking/Data Center PSECU Headquarters

- Configuration
 - Capstone C800 Microturbine (800 KW)
 - 288 tons of chilled water direct exhaust fired with gas backup system
 - 5 MMBTU of hot water winter heating load for remainder of facility
- Drivers
 - Reliability and redundancy
 - Savings
- First 18 months of operation
 - Availability of >95%
 - Payback period
 - Original payback of less than 6 years
 - Based on 1st year true up less than 5 years
- Next Steps
 - Evaluating fifth microturbine

Case Study 2 – Higher Education Messiah College

Configuration

- Capstone C1000 Microturbine (1 MW)
- 280 tons of chilled water
- 5 MMBTU of hot water

Drivers

- Natural Gas onsite eliminate propane
- Savings
 - \$800K per year (original)
 - \$1,000K per year (new gas contract)
 - Net metering
- Safe Haven for students during power outage
- Currently in Startup and Commissioning

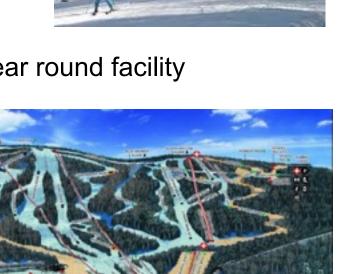
UGI

Case Study 3 – Casino

- Configuration
 - Guascor 828 KW IC Engine
 - 4 MMBTU of hot water heat recovery
 - 4 UPS systems to protect slot machines

Drivers

- Reliability, outage losses and power quality for slot machines
 - Minor \$15K to \$30K / incident (8-10 per year)
 - Major


 \$80K to \$120K / incident (1 every 2-3 years)
- Savings
 - Utility savings <4.0 year payback
- Currently in Construction

UGI

Case Study 4 – Ski Resort

- Configuration
 - 3 each 800 KW IC Engine (2.4 MW)
 - 18 MMBTU of hot water
 - Net Metering
- Drivers
 - Natural Gas onsite
 - Electric Savings
 - Winter peak of 13 MW
 - · Summer peak of 250 KW
 - Support expansion and being a year round facility
 - Water Park
 - Hotel
 - Currently in design

Case Study 5 – Industrial Properties

Configuration

- 1 6 MW of CHP generation
- Multiple units to improve reliability
- Duct fired HRSG to produce more steam

Drivers

- Support expansion and changes to process
- Saves on new boiler
- Reduces electric service upgrades from utility
- Currently in design

Final Thought

One CHP client is using 70% more fuel, with no increase in natural gas cost.

1 MW of electricity every hour is free.

Questions and Discussion

Gary Fechter Performance Solutions and Engineering Services

Office – 215-716-7114

Cell – 610 496-5782

Email – gfechter@ugihvac.com